Extensions 1→N→G→Q→1 with N=C3⋊S3 and Q=C22⋊C4

Direct product G=N×Q with N=C3⋊S3 and Q=C22⋊C4
dρLabelID
C22⋊C4×C3⋊S372C2^2:C4xC3:S3288,737

Semidirect products G=N:Q with N=C3⋊S3 and Q=C22⋊C4
extensionφ:Q→Out NdρLabelID
C3⋊S3⋊(C22⋊C4) = C2×S32⋊C4φ: C22⋊C4/C22C22 ⊆ Out C3⋊S324C3:S3:(C2^2:C4)288,880
C3⋊S32(C22⋊C4) = C62.91C23φ: C22⋊C4/C2×C4C2 ⊆ Out C3⋊S348C3:S3:2(C2^2:C4)288,569
C3⋊S33(C22⋊C4) = C62.116C23φ: C22⋊C4/C23C2 ⊆ Out C3⋊S324C3:S3:3(C2^2:C4)288,622
C3⋊S34(C22⋊C4) = C2×C62⋊C4φ: C22⋊C4/C23C2 ⊆ Out C3⋊S324C3:S3:4(C2^2:C4)288,941

Non-split extensions G=N.Q with N=C3⋊S3 and Q=C22⋊C4
extensionφ:Q→Out NdρLabelID
C3⋊S3.1(C22⋊C4) = C2.AΓL1(𝔽9)φ: C22⋊C4/C2D4 ⊆ Out C3⋊S3248+C3:S3.1(C2^2:C4)288,841
C3⋊S3.2(C22⋊C4) = PSU3(𝔽2)⋊C4φ: C22⋊C4/C2D4 ⊆ Out C3⋊S3368C3:S3.2(C2^2:C4)288,842
C3⋊S3.3(C22⋊C4) = C22⋊F9φ: C22⋊C4/C22C4 ⊆ Out C3⋊S3248+C3:S3.3(C2^2:C4)288,867
C3⋊S3.4(C22⋊C4) = C62.D4φ: C22⋊C4/C22C22 ⊆ Out C3⋊S348C3:S3.4(C2^2:C4)288,385
C3⋊S3.5(C22⋊C4) = C62.Q8φ: C22⋊C4/C22C22 ⊆ Out C3⋊S348C3:S3.5(C2^2:C4)288,395
C3⋊S3.6(C22⋊C4) = (C6×C12)⋊2C4φ: C22⋊C4/C2×C4C2 ⊆ Out C3⋊S348C3:S3.6(C2^2:C4)288,429

׿
×
𝔽