Extensions 1→N→G→Q→1 with N=C3:S3 and Q=C22:C4

Direct product G=NxQ with N=C3:S3 and Q=C22:C4
dρLabelID
C22:C4xC3:S372C2^2:C4xC3:S3288,737

Semidirect products G=N:Q with N=C3:S3 and Q=C22:C4
extensionφ:Q→Out NdρLabelID
C3:S3:(C22:C4) = C2xS32:C4φ: C22:C4/C22C22 ⊆ Out C3:S324C3:S3:(C2^2:C4)288,880
C3:S3:2(C22:C4) = C62.91C23φ: C22:C4/C2xC4C2 ⊆ Out C3:S348C3:S3:2(C2^2:C4)288,569
C3:S3:3(C22:C4) = C62.116C23φ: C22:C4/C23C2 ⊆ Out C3:S324C3:S3:3(C2^2:C4)288,622
C3:S3:4(C22:C4) = C2xC62:C4φ: C22:C4/C23C2 ⊆ Out C3:S324C3:S3:4(C2^2:C4)288,941

Non-split extensions G=N.Q with N=C3:S3 and Q=C22:C4
extensionφ:Q→Out NdρLabelID
C3:S3.1(C22:C4) = C2.AΓL1(F9)φ: C22:C4/C2D4 ⊆ Out C3:S3248+C3:S3.1(C2^2:C4)288,841
C3:S3.2(C22:C4) = PSU3(F2):C4φ: C22:C4/C2D4 ⊆ Out C3:S3368C3:S3.2(C2^2:C4)288,842
C3:S3.3(C22:C4) = C22:F9φ: C22:C4/C22C4 ⊆ Out C3:S3248+C3:S3.3(C2^2:C4)288,867
C3:S3.4(C22:C4) = C62.D4φ: C22:C4/C22C22 ⊆ Out C3:S348C3:S3.4(C2^2:C4)288,385
C3:S3.5(C22:C4) = C62.Q8φ: C22:C4/C22C22 ⊆ Out C3:S348C3:S3.5(C2^2:C4)288,395
C3:S3.6(C22:C4) = (C6xC12):2C4φ: C22:C4/C2xC4C2 ⊆ Out C3:S348C3:S3.6(C2^2:C4)288,429

׿
x
:
Z
F
o
wr
Q
<